搜索: 高级
  注册会员 找回密码
设为首页
收藏本站
广告合作
加盟合作
联系我们
电源技术网
 首  页      资 讯      供 应     求  购     展会信息     招 聘      求 职      资料共享      器件手册     技术文章    会员中心    电源沙龙
  当前位置:首页>资讯>科普短文>文章内容

如何提高数字定位器的带宽

作者:power   来源:网络   点击:    日期:2009-10-08    

1 引言
    数字电位器可广泛用于控制或调整电路参数。由于数字电位器本身带宽的限制.只能用于直流或低频应用。其典型一3 dB带宽在100 kHz至几MHz内,具体数值与型号有关。然而,通过采用下面介绍的简单方法,可以将电位器的信号带宽从10倍提高到100倍,可以获得4 MHz的O.1 dB带宽以及25 MHz以上的一3 dB带宽。这样可使数字电位器用于视频或其他高速应用领域。

2 有限的调整范围
    在许多应用中,数字电位器用于信号微调,而无需从0%到100%的满量程调整,例如:一次性工厂校准等。在这些应用中,数字电位器一般提供10%以下的调整范围。正是借助这一有限的调整范围来提高数字电位器的带宽。

3 典型应用电路
    图1为电位器典型的电路配置,图中,数字电位器用于改变信号的衰减量。R2为数字电位器,Cwiper为寄生电容,该电容是所有数字电位器固有的,它限制电路带宽。当电位器在0至满量程之间摆动时,R1和R3用于限制数字电位器引起的信号衰减。

    需要说明的是:由于该电路采用运算放大器,可用于信号放大和衰减。因此,以下介绍的提高带宽的方法与所选电路拓扑无关。为计算电路的传输函数(VOUT/VIN),可使用不同模式的电位器,见图2。图中,R2被分为R2top和R2bottom,其中,R2top是电位器触点以上的电阻,R2bottom是电位器触点以下的电阻。假设使用的电位器具有10 kΩ的端到端电阻(忽略触点电阻的影响),R2top和R2bottom是相对于数字编码的理想传输函数,如图3所示。传输函数的两个端点和中点:当电位器编码为0时,R2top=10 kΩ,R2bpttom=0kΩ;而当电位器编码处于中间位置时,则R2top=R2bottom=5 kΩ;当电位器编码处于满标位置时,R2top=0 kΩ,R2bottom=10 kΩ。

由图2得出VOUT/VIN的直流传输函数:
VOUT/VIN=(R3+R2bottom)/(R1+R2+R3)    (1)

式中:R2=R2top+R2bottom

    假设R2=10 kΩ(常用数字电位器电阻值),如果希望把输入信号衰减到任意电平,例如,输入值的70%±5%(输入值的65%~75%)。然后,运用相关运算,调整范围为65%~75%,标称值f中间位置)为70%:R1=24.9 kΩ且R3=64.9 kΩ。

4 典型应用电路的带宽
    利用式(1)中的R1和R3电阻值,假设Cwiper=10pF,获得表l所列的带宽。实际触点电容在3~80 pF内,并与触点电阻、步长数、采用的IC工艺及电位器体系结构等有关。3~5 V供电、32至256步长的10 kΩ电位器的典型电容值为3~10 DF。

*注意,带宽与触点电容成反比。采用3 pF Cwiper,带宽频率将提高3.3倍对于视频等应用,这些带宽还是过低。

    需要注意的是,这里分析基于的假设是:触点电容与电位器电阻并联,由此限制电位器的带宽。该方法是最直接的电位器使用方式,如果采用更复杂的电位器配置,可能会进一步限制带宽。因此,讨论提高带宽非常有必要,即使实际带宽未达到预期目的。

5 提高电路带宽
    提高电路带宽最明显方法是选择较低阻值的数字电位器,例如,1 kΩ电位器,按比例调整R1和R2(1 kΩ电位器与10kΩ电位器相比,阻值减小10倍)。然而,低阻值数字电位器(1 kΩ)一般占用较大的裸片面积,意味着较高成本和较大封装尺寸,出于这一原因,1 kΩ电位器的实际应用非常有限。如果某一电位器能够满足设计要求,10kΩ电位器的带宽会随着电阻的减小而线性提高,例如,提高10倍(假设杂散触点电容无变化);或使用1 kQ电位器,设置Rl=2.49 kΩ,R3=6.49kΩ,触点电容为10 pF,电位器设在中间位置,可获得1.15MHz的—0.1 dB带宽,及7.6MHz的-3dB带宽。这比表l中的带宽提高10倍。

6 使用10 kΩ电位器,改变电路拓扑
    与1kΩ电位器相比,选择5kΩ和10 kΩ电位器可能是更好的解决方案,可以获得更小封装的电位器,从中选择易失或非易失存储器,也有更多的数字接口(up/down、I2C、SPITM)以及调整步长(32、64、128、256等)可供选择。出于这一原因,设计实例选用10 kΩ端到端电阻的电位器。假设成本、体积、接口以及电位器调整步长等因素的限制,需使用10 kΩ端到端电阻电位器,这种情况下提高典型应用电路的带宽的方法是去掉电阻R1和R3,使用步长数多于该电路要求的电位器。例如,32步长电位器获得10%的调整范围,按照上述介绍,可以选择替换这一步长的电位器,而使用256步长电位器,去掉R4和R6,限制电位器的调整范围在达到要求衰减的编码65%~75%内。所使用的编码是从0.65×256 (使用166)到编码0.75×256(192)。该实例使用一个256步长的电位器;由于有限的编码将可用步长数限制在26,即10%的调整范围,仅用了256步长的10%。

    与32步长电位器相比,该方法的缺点是256步长电位器成本较高,故可选用封装尺寸较大的电位器。假设Cwiper为30 pF,VOUT/VIN=0.70,处于调整范围的中点,图4电路中有384 kHz的-0.1 dB带宽,879 kHz的-0.5 dB带宽,2.52 MHz的一3dB带宽。与表1相比,其带宽提高3倍。另一种成本更低、性能更好的方案是在图图5最初电路使用两只并联电阻(R4和l电路中加入分立电 R5),与图l和图2相比带宽增大100倍阻,如图5所示。

7 使用并联电阻降低电路阻抗
    电路中增加并联电阻(注意,使用图2中引入的数字电位器模型)。降低电路阻抗(提高带宽),通过设置电路增益,限制由数字电位器在0编码到满标编码之间摆动时导致的衰减,可以达到双重目的。

    设置电位器电路增益,使用并联器件限制其调整范围(R4和R5,而不是简单串联R1、R2和R3),其电路带宽优于图1带宽。还需要注意,电阻R1、R2和R3还会影响电路增益,但由于其串联电阻要比R4和R5大得多,这种影响非常小。可以通过简单示例来说明R4和R5对图5电路的影响。在图6(a)中,电路上部电阻采用了图中方程给出的电阻组合值。注意,由于R4是与R1和R2top并联,它降低了电路阻抗。

上一页12 下一页
上一篇:智能化网络UPS浅析   下一篇:基于模糊控制的无人机应急电源快速充电方法
[收藏] [推荐] [评论(0条)] [返回顶部] [打印本页] [关闭窗口]  
用户名: 新注册) 密码: 匿名评论
评论内容:(不能超过250字,需审核后才会公布,请自觉遵守互联网相关政策法规。
 §最新评论
  热点文章
·PWM控制芯片SG3525功能简介(图)
·太阳能的资源储量与分布(图)
·如何辨认翻新芯片
·430接收机开关电源的打摩
·UPS帮你忙解决电压不稳电脑重启
·未来铅酸蓄电池技术的三大趋势
·九州DVS-398T数字卫星接收调制一
·电网干扰浅析
·计算机电源的7个组成部分
·数据中心四大安全标准等级
·UPS在家庭中的应用
·电动自行车用铅酸蓄电池选购与使
·机架式模块化UPS与传统塔式UPS的
·半智能型充电器的种类及工作原理
·理想的LED驱动电路设计方法
·电子节能灯的十大经验定律
·元器件知识:集成电路应用电路识
·风能的资源储量与分布(图)
  相关文章
·一种新型电网数显功率表的电路设
·数字控制挑战传统电源设计理念
·服务器的冗余电源技术
·DC-DC电源驱动PA提高WCDMA手机发
·基于NiosII的高精度数控直流稳压
·航空交流供电测试系统信号源的设
·输电线路电压/电流的计算机保护
·理想的LED驱动电路设计方法
·一种防雷击浪涌的开关电源电路设
·基于单片机的金卤灯电子镇流器研
·基于AVR单片机的多功能电源集成
·基于ADS8364的数据采集系统设计
·基于模糊控制的无人机应急电源快
·如何提高数字定位器的带宽
·智能化网络UPS浅析
·高频开关电源系统的主要技术参数
·小功率户外型光伏并网逆变器的防
·一种智能型全自动快速充电机的设

设为首页 | 加入收藏 | 广告合作 | 关于我们 | 联系我们 | 网站地图 | 友情链接 | 意见投诉 | 使用帮助
本站部分信息由企业自行提供,对于该信息内容的真实准确合法性,电源技术网对此不承担任何保证责任。
所有资料来自于网络,版权归作者所有,本站不保证正确性和完整性,只提供参考学习交流之用。
Copyright @ 2003-2009 电源技术网 Inc All Rights Reserved.Powered By power-bbs.com
粤ICP备06099648号 E-mail: